

TRAFFIC AND PARKING IMPACT ASSESSMENT OF HIGH DENSITY RESIDENTIAL DEVELOPMENT AT 14-18 PHILLIP STREET, ST MARYS

Address: Shop 7, 720 Old Princes Highway Sutherland NSW 2232 Postal: P.O Box 66 Sutherland NSW 1499

Telephone: +61 2 8355 2440
Fax: +61 2 9521 7199
Web: www.mclarentraffic.com.au
Email: admin@mclarentraffic.com.au

Division of RAMTRANS Australia ABN: 45067491678 RPEQ: 19457

Transport Planning, Traffic Impact Assessments, Road Safety Audits, Expert Witness

Development Type: High Density Residential Development

Site Address: 14-18 Phillip Street, St Marys

Prepared for: Growth Built

Document reference: 190540.01FB

Status	Issue	Prepared By	Checked By	Date
Draft	Α	LS	ММ	11 th November 2019
Draft	В		ММ	14 th November 2019
Final	Α		ММ	12 th December 2019
Final	В		ММ	14 th January 2020

Please be aware that all information and material contained in this report is the property of McLaren Traffic Engineering. The information contained in this document is confidential and intended solely for the use of the client for the purpose for which it has been prepared and no representation is made or if to be implied as being made to any third party. Any third party wishing to distribute this document in whole or in part for personal or commercial use must obtain written confirmation from McLaren Traffic Engineering prior to doing so. Failure to obtain written permission may constitute an infringement of copyright and may be liable for legal action.

TABLE OF CONTENTS

1	INTRODUCTION	
1.1 1.2 1.3 1.4	Description and Scale of Development	1 1
2	EXISTING TRAFFIC AND PARKING CONDITIONS	3
2.1	Road Hierarchy	3
2.2 2.3	Existing Traffic Management Existing Traffic Volumes 2.3.1 Existing Road Performance	3
2.4 2.5	Public Transport Future Road and Infrastructure Upgrades	
3	PARKING ASSESSMENT	7
3.1 3.2 3.3	Car Parking Requirements Disabled Parking Bicycle and Motorcycle Parking Requirements 3.3.1 Bicycle Parking Requirements 3.3.2 Motorcycle Parking Requirements	
3.4 3.5	Servicing & Loading Car Park Design & Compliance	10
4	TRAFFIC ASSESSMENT	12
4.1	Traffic Generation	12
5	COUNCIL PRE-DA COMMENTS	13
5.1 5.2	Urban Design Review Panel Comments Pre-Lodgement Meeting Comments	
6	CONCLUSION	18

1 INTRODUCTION

M^cLaren Traffic Engineering was commissioned by *Growth Built* to provide a Traffic and Parking Impact Assessment of the High Density Residential Development at 14-18 Phillip Street, St Marys as depicted in **Annexure A** for reference.

1.1 Description and Scale of Development

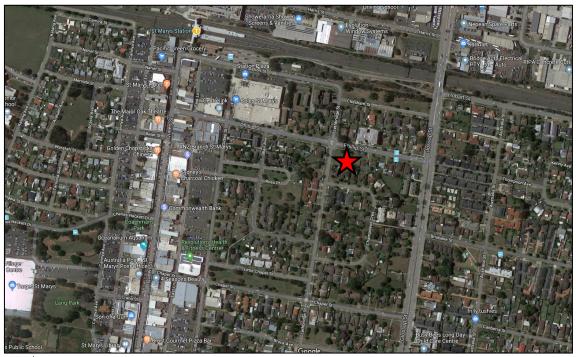
The proposed development has the following characteristics relevant to traffic and parking:

- A total of 44 residential units consisting of:
 - 24 x one-bedroom units;
 - o 20 x two-bedroom units including eight (8) adaptable units.

All vehicular access is via a two-way driveway from Lethbridge Street into a basement car park, providing 20 residential car parking space including five (5) disabled parking spaces.

1.2 State Environmental Planning Policy (Infrastructure) 2007

The proposed development does not qualify as a traffic generating development with relevant size and/or capacity under Clause 104 of the SEPP (Infrastructure) 2007. Accordingly, formal referral to the Roads and Maritime Services (RMS) is unnecessary and the application can be assessed by Penrith City Council officers accordingly.


1.3 Site Description

The subject site is currently zoned R4 – High Density Residential in accordance with the Penrith City Council Local Environmental Plan 2010 (LEP) and is comprised of three (3) residential lots which will be consolidated under the proposal to 1 lot, and then provisions for strata subdivision shall be sought. Two (2) lots consist of vacant land and the remaining lot contains a residential dwelling.

The site has street frontages to Phillip Street to the north of the site and Lethbridge Street to the west of the site. The site is generally surrounded by low-density residential dwellings, with a high residential development located to the north of the site, on the opposite side of Phillip Street. St Marys Town Centre and retail precinct is located to the west of the site.

1.4 Site Context

The sites location is shown on an aerial photo and a street map in Figure 1 and Figure 2 respectively.

Site Location

FIGURE 1: SITE CONTEXT - AERIAL PHOTO

Site Location

FIGURE 2: SITE CONTEXT - STREET MAP

2 EXISTING TRAFFIC AND PARKING CONDITIONS

2.1 Road Hierarchy

The road network servicing the site has characteristics as described in the following subsections.

2.1.1 Glossop Street

- Unclassified REGIONAL Road (No. 7167)
- Approximately 20m in width facilitating two traffic flow lanes in each direction and a median of approximately 6m in width;
- Signposted 60km/h speed limit;
- No kerbside parking permitted on both sides of the road.

2.1.2 Phillip Street

- Unclassified COLLECTOR Road;
- Approximately 12m in width facilitating one traffic flow lane in each direction and kerbside parking on both sides of the road;
- No speed limit signposted; default 50km/h limit applies;
- Unrestricted kerbside parking permitted on both sides of the road.

2.1.3 Lethbridge Street

- Unclassified LOCAL Road:
- Approximately 7m in width facilitating one traffic flow lane in each direction;
- No speed limit signposted; default 50km/h limit applies;
- No kerbside parking permitted directly adjacent to the site, with kerbside parking permitted to the south of the site (where BB-lines are not present).

2.2 Existing Traffic Management

- Signal controlled intersection of Glossop Street / Phillip Street;
- Roundabout controlled intersection of Phillip Street / Lethbridge Street;
- Priority controlled intersection of Lethbridge Street / Champness Crescent.

2.3 Existing Traffic Volumes

Intersection traffic surveys were conducted at the intersections of Phillip Street / Glossop Street and Phillip Street / Lethbridge Street from 7:00 AM to 10:00 AM and 4:00 PM to 7:00 PM on Wednesday the 23rd of October 2019 representing a typical operating weekday. The full survey results are shown in **Annexure B** for reference.

2.3.1 Existing Road Performance

The performance of the surrounding intersections under the existing traffic conditions has been assessed using SIDRA INTERSECTION 8.0, **Table 1** summarises the resultant intersection performance data, with full SIDRA results reproduced in **Annexure C**.

TABLE 1: EXISTING INTERSECTION PERFORMANCES (SIDRA INTERSECTION 8.0)

Intersection	Peak Hour	Degree of Saturation ⁽¹⁾	Average Delay ⁽²⁾ (sec/veh)	Level of Service ⁽³⁾	Control Type	Worst Movement	
		EXISTI	NG PERFORMAI	VCE			
Glossop Street /	AM	0.64	14.1	Α	Cimanla	N/A	
Phillip Street	PM	0.70	17.2	В	Signals	N/A	
			5.8	Α		UT from Phillip	
Lethbridge Street /	AM	0.26	(Worst: 10.3)	(Worst: A)	Roundabout	Street	
Phillip Street	PM	0.27	6.2	Α	Noundabout	RT from	
	r IVI	0.37	(Worst: 10.6)	(Worst: A)		Lethbridge Street	

NOTES:

As shown above, the two relevant intersections are currently performing at a high level of efficiency, with a level of service "A" or "B" conditions in both the AM & PM peak hour periods. The level of service "A" and "B" performance is characterised by low approach delays and spare capacity.

2.4 Public Transport

The nearest bus stop which the subject site has access to (ID: 2760210) is located approximately 80m walking distance to the east of site on Phillip Street. The bus stop services the following existing bus routes provided by Busways Western Sydney and Transit Systems:

- 745 (St Marys to Norwest Hospital via Stanhope Gardens);
- 758 (St Marys to Mount Druitt via Tregear and Shalvey);
- 759 (St Marys to Mount Druitt via Ropes Crossing);
- 774 (Mount Druitt to Penrith via Nepean Hospital);
- 782 (St Marys to Penrith via Werrington), and;
- 835 (University of Western Sydney to Prairiewood).

⁽¹⁾ The Degree of Saturation is the ratio of demand to capacity for the most disadvantaged movement.

⁽²⁾ The average delay is the delay experienced on average by all vehicles. The value in brackets represents the delay to the most disadvantaged movement.

⁽³⁾ The Level of Service is a qualitative measure of performance describing operational conditions. There are six levels of service, designated from A to F, with A representing the best operational condition and level of service F the worst. The LoS of the intersection is shown in bold, and the LoS of the most disadvantaged movement is shown in brackets.

Additionally, the St Marys Bus Interchange is located approximately 320m walking distance to the north west of the subject site, on Station Street. These bus stops services the following additional existing bus routes provided by Busways Western Sydney and Transit Systems from those serviced by the nearby bus stop:

- 770 (Mount Druitt to Penrith via St Marys);
- 771 (Mount Druitt to St Marys via Colyton);
- 775 (Mount Druitt to Penrith via Erskine Park);
- 776 (Mount Druitt to Penrith via St Clair);
- 779 (Erskine Park to St Marys);
- 781 (St Marys to Penrith via Glenmore Park);
- S11 (St Clair to St Marys)

St Marys Train Station is located 520m walking distance to the north west of the subject site, servicing the T1 – Western Line. A train service is provided every 5 – 10 minutes in commuter peak periods and provides direct access between Emu Plains and Sydney CBD.

The sites location subject to the surrounding public transport network is shown in **Figure 3** below.

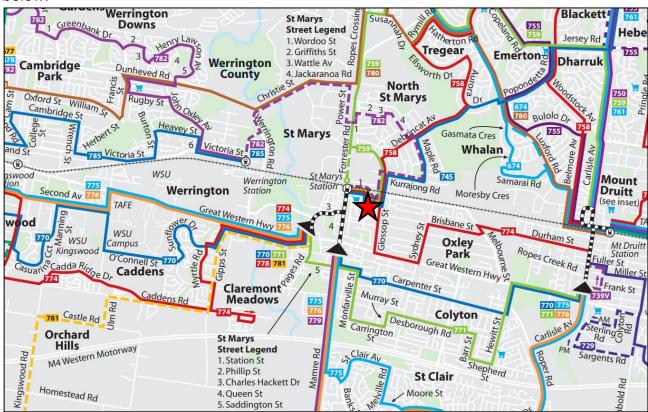


FIGURE 3: PUBLIC TRANSPORT NETWORK MAP

2.5 Future Road and Infrastructure Upgrades

From Penrith City Council Development Application tracker and website, it appears that there are no future planned road or public transport changes that will affect traffic conditions within the immediate vicinity of the subject site.

3 PARKING ASSESSMENT

3.1 Car Parking Requirements

The proposed development is being made on behalf of a social housing provider and as such the State Environmental Planning Policy (Affordable Rental Housing) 2009 (SEPPARH) Part 2 – New affordable rental housing, Division 1 – In-fill affordable housing applies. The car parking requirements under the (SEPPARH) are outlined below:

14 Standards that cannot be used to refuse consent

General

A consent authority must not refuse consent to development to which this Division applies on any of the following grounds:

- (a) parking if:
- (i) in the case of a development application made by a social housing provider for development on land in an accessible area—at least 0.4 parking spaces are provided for each dwelling containing 1 bedroom, at least 0.5 parking spaces are provided for each dwelling containing 2 bedrooms and at least 1 parking space is provided for each dwelling containing 3 or more bedrooms, or

Where accessible area is defined by the SEPPARH as:

4 Interpretation—general

(1) In this Policy:

accessible area means land that is within:

- (a) 800 metres walking distance of a public entrance to a railway station or a wharf from which a Sydney Ferries ferry service operates, or
- (b) 400 metres walking distance of a public entrance to a light rail station or, in the case of a light rail station with no entrance, 400 metres walking distance of a platform of the light rail station, or
- (c) 400 metres walking distance of a bus stop used by a regular bus service (within the meaning of the Passenger Transport Act 1990) that has at least one bus per hour servicing the bus stop between 06.00 and 21.00 each day from Monday to Friday (both days inclusive) and between 08.00 and 18.00 on each Saturday and Sunday.

As the subject site is within a walking distance of approximately 520m of the St Marys Train Station, the proposed development is on land within an accessible area.

The car parking required for the proposed development, in accordance with the SEPPARH requirements is shown in **Table 2** below.

TABLE 2: SEPP PARKING REQUIREMENTS

Land Use	Туре	Scale	Rate and (Source of rate)	Parking Required
In-fill Affordable	One- bedroom unit	24	0.4 per unit (SEPP)	9.6 (10)
Housing	Two- bedroom unit	20	0.5 per unit (SEPP)	10
Total	-	-	-	20

As shown in **Table 2**, the development requires a total of **20** car parking spaces as per the SEPPARH. The proposed plans show provision for **20** spaces, complying with the SEPP requirements.

3.2 Disabled Parking

Reference is made to Penrith City Council *Development Control Plan* (DCP) *2014, D2 Residential Development* which outlines the following requirements for adaptable housing:

10% of all dwellings or a minimum one dwelling, whichever is greater, must be designed in accordance with the Australian Adaptable Housing Standard (AS4299-1995), to be capable of adaptation for people with a disability or elderly residents.

Based upon the above, the proposal requires five (5) adaptable units. Five (5) adaptable dwellings are included within the proposed development, complying with Council's requirement.

Council's DCP also requires that car parking and garages allocated to adaptable dwellings must comply with the requirements of the relevant Australian Standard regarding parking for people with a disability. Whilst this refers to *AS2890.6:2009*, reference is made to *AS4299:1995 Adaptable Housing* which provides the following extract relating to the provision of disabled car parking:

3.7.1 General Private car parking spaces shall be large enough to enable a person with a wheelchair to get in and out of both the car and the parking space. A car parking space width of 3.8m minimum is necessary to enable a driver to alight, open the passenger side door, and assist a person with a disability into a wheelchair, or for a side-loading ramp. A 3.8 m, minimum width is also required for a driver with a disability to unload a wheelchair and to alight.

As such, it is considered acceptable for car parking spaces allocated to the adaptable dwellings to satisfy the requirements of *AS4299:1995*. In accordance with *AS4299:1995*, a total of five (5) adaptable car parking spaces are required and are adequately provided within the proposed plans, designed in accordance with *AS2890.6:2009* or *AS4299:1995*.

3.3 Bicycle and Motorcycle Parking Requirements

3.3.1 Bicycle Parking Requirements

Penrith City Councils DCP 2014, Part C10 Transport, Access and Parking specifies that bicycle parking is to be provided in accordance with provision rates from Planning Guidelines for Walking and Cycling' (NSW Government 2004). This document specifies the following bicycle parking rates applicable to the preliminary scale:

1-bedroom units/flats and bedsitters

Resident/staff (Long-term use) 20–30%U

Customer/visitor (Short-term use) 5–10%U

2- or more bedroom units/flats

Resident/staff (Long-term use) 20–30%U

Customer/visitor (Short-term use) 5-10%U

Key: U=Units and apartments

In accordance with the above rates, the proposed development requires **9** to **13** residential bicycle spaces, and **2** to **4** visitor bicycle spaces (i.e. a range of **11** to **17** total spaces). The proposed plans indicate a bicycle parking provision of **10** bicycle spaces within the basement to be shared between residents and **4** visitor bicycle spaces on ground floor, resulting in compliance with Council's DCP requirements.

3.3.2 <u>Motorcycle Parking Requirements</u>

The Penrith City Council Development Control Plan does not specify parking requirements for motorcycles and as such nil (0) motorcycle car parking spaces have been provided, complying with Council's DCP.

3.4 Servicing & Loading

Reference is made to the *Penrith City Council DCP 2014, C5 Waste Management*, which specifies the following loading and servicing requirements applicable to the proposed development:

5.2.2.4 Residential Flat Buildings

- 5) On-site collection is required to service the development. Adequate and safe access must be provided for Council's Standard Waste Collection Vehicles and waste collection staff as follows:
- a) The route must be designed to allow collection vehicles to enter and exit the site in a forward direction with limited manoeuvring and reversing onsite:
- b) The route of travel (including vehicle manoeuvring areas) for the waste collection point is to satisfy the typical dimensions of heavy rigid vehicle. This also includes adequate vehicle clearance for the vehicle. Australian Standard AS2890.2 Parking Facilities: Off-Street Commercial Vehicle Facilities provides typical dimensions and turning circles.

An on-site waste collection area suitable for the Penrith City Council's 9.7m length Low Entry Heavy Rigid Waste Collection vehicle (in accordance with Council's *Residential Flat Building Waste Management Guidelines*) has been provided. To assess the ability of Council's waste collection vehicle to access the site, swept path analysis has been undertaken with results reproduced in **Annexure D** for reference. The swept path analysis has been undertaken using AutoCAD's 2019 Vehicle Tracking package. The results of the swept path analysis indicate that Council's vehicle can successfully enter the site in a forward direction, reverse into the designated on-site loading bay and then exit the site in a forward direction.

Any other loading or servicing for the site can be undertaken within this loading bay outside of waste collection periods which can be internally managed. All loading or servicing is to be undertaken by vehicles of sizes up to an including that of Council's 9.7m length waste collection vehicle, with a maximum vehicle height of 3.5m.

3.5 Car Park Design & Compliance

The car parking layout as depicted in **Annexure A** have been assessed to achieve the relevant clauses and objectives of AS2890.1:2004, AS2890.2:2002, AS2890.6:2009 and AS4299:1995.

The proposed car park design achieves:

- 5.5m width two-way driveway between kerbs (and 6.1m width between walls) facilitating access to Lethbridge Street;
- Minimum 6.6m width parking aisle;
- Minimum 5.4m length, 2.4m width spaces for residents;
- Minimum 5.4m length, 2.4m width disabled spaces with adjacent associated 5.4m length, 2.4m width shared space;
- Minimum 5.4m length, 3.8m width adaptable parking spaces;
- Minimum headroom of 3.5m for general circulation and loading bay, and 2.5m headroom clearance provided over disabled and adaptable parking areas.

Swept path testing of the above design has been undertaken and is reproduced in **Annexure D** for reference.

Whilst the plans have been assessed to comply with the relevant standards, it is usual and expected that a design certificate be required at the Construction Certificate stage to account for any changes following the development application.

3.5.1 <u>Driveway Access</u>

The existing grade outside the property boundary between the road and boundary ranges from 10-13% based upon the survey. Considering these existing grades and the requirement to provide access into the site for waste collection vehicles, the existing grades of 10-13% will not be sufficient to satisfy the requirements of AS2890.2:2018 in relation to access. As such the grades outside the property boundary are to be modified to allow vehicular access for waste collection vehicles into the basement car park without scraping.

Typically, the allowable grades outside the verge are restricted by and provided by Council. Reference is made to Section 7.5 of Penrith City Council Engineering Construction Specification for Civil Works which states the following:

The crossfall of the road reserve shall grade towards the road at 4% from back of kerb to footpath, 2% across the footpath, and a maximum of 4% to the property boundary or as specified by Council's engineer

The above is required in relation to subdivisions. Further, reference is made to Plan SD1004 *Penrith City Council Engineering Construction Specification for Civil Works,* which allows for a maximum grade of up to 12.5% for vehicle access within the verge.

Notwithstanding the above, the maximum grade of 12.5% within the verge would be non-complaint with AS2890.2:2018 and as such cannot be adopted. The recommended design based upon the survey is shown in **Annexure E** for reference, which also includes undercarriage vertical clearance testing for the 8.8m length Medium Rigid Vehicle as specified in AS2890.2:2018, it should be noted that the Council waste collection vehicle is approximately 8.1m in length plus an add 1.6m in length due to the rear waste collection mechanism. The waste collection mechanism is not relevant to undercarriage vertical clearance testing as it is located significantly off the ground compared to the lowest point of the vehicle. As such the 8.8m length Medium Rigid Vehicle as specified in AS2890.2:2018 is a worst case scenario.

The recommended design results in a difference of 190mm at the property boundary from the existing conditions, resulting in the requirement to modify the verge (existing footpath will need to be modified). Ultimately, to provide access into the development in accordance with AS2890.2:2018 design requirements, the existing boundary RL needs to be lowered and discussions with Council should be undertaken for the preferred design within the verge in consultation with the applicant's architect and civil engineer.

4 TRAFFIC ASSESSMENT

The impact of the expected traffic generation levels associated with the subject proposal is discussed in the following sub-sections.

4.1 Traffic Generation

Traffic generation rates for the relevant land uses are provided in the *Roads and Maritime* Services (RMS) Guide to Traffic Generating Developments (2002) and recent supplements (including the *TDT 2013/04a* Technical Direction with updated traffic surveys) and are as follows:

TDT 2013/04a

High density residential flat dwellings

AM peak (1 hour) vehicle trips per unit 0.19

PM peak (1 hour) vehicle trips per unit 0.15

The resulting traffic generation is summarised in **Table 3** below.

TABLE 3: ESTIMATED TRAFFIC GENERATION

Land Use	Time	Scale	Generation Rate	Trips	Directional Split ⁽¹⁾
High Density	/ AM 44 units 0.19 per un		0.19 per unit	9	2 in; 7 out
Residential	PM	44 UIIIIS	0.15 per unit	7	6 in; 1 out

Note: (1) Assumes 20% inbound & 80% outbound during AM peak: Vice versa for PM.

As shown in **Table 3**, the estimated traffic generation associated with the proposed development is in the order of nine (9) vehicle trips.

The proposed development will not have an adverse effect on any nearby intersections and can be readily accommodated within the existing road network with minimal impacts in terms of traffic flow efficiency, residential amenity and road safety considerations.

Indeed, the computer models that are available to assess these impacts are not sensitive to such small changes and it may be concluded that the road network will operate with no change in the existing levels of service. In this regard, the proposed residential use of the site is a low-order traffic use and the proposed development is supportable in terms of its traffic impacts.

It should be noted that while the above rates are estimated, it is likely that peak traffic generation of this site will be lower than what is stipulated in **Table 3** above. The adopted traffic generation rates are based upon the provision of parking in accordance with the RMS Guide to Traffic Generating Developments, which would require 33 residential car parking spaces. The development provides 20 car parking spaces in accordance with the SEPPARH parking requirements or 60% of the parking required under the RMS Guide. As such is it likely the peak traffic generation of the site would be 60% of that stipulated in **Table 3** above.

5 COUNCIL PRE-DA COMMENTS

The applicant has completed both a Council Urban Design Review Panel meeting on 18th September 2019, as well as a pre-lodgement meeting with Council on 19th September 2019. Following these respective meetings, comments were provided by Penrith City Council within an *Urban Design Review Panel Meeting* letter dated 25th September 2019 and a *Pre-lodgement Advice* letter dated 30th September 2019. Comments relevant to traffic and parking are quoted below with *M^CLaren Traffic Engineering*'s (MTE) response thereafter.

5.1 Urban Design Review Panel Comments

The basement arrangement does not locate accessible parking spaces adjacent to the lift. This requires amendment with relocation of spaces 17 and 18 to allow for Accessible Spaces 3, 4 and 7 to be moved closer to the lift. Further Space 19 and 20 is not supported as it requires reversing from the aisle of traffic entering the site.

Amendments to waste collection as outlined within separate pre-lodgement advice should enable remove of spaces 19 and 20 elsewhere within the basement.

MTE Response: The plans assessed within the meeting have since been amended (updated plans reproduced in **Annexure A**), with all proposed accessible parking spaces located near the lifts of the development. Similarly updates to the plans have resulted in the movement of spaces 19 and 20 from those assessed in the meeting following updates to the proposed waste collection operation. The movement of these spaces places them at a location where they are not required to reverse in close proximity to the driveway entry.

It was confirmed that waste collection can be undertaken with a 3.5m floor to ceiling clearance and manoeuvring that can be made from within the basement and not via a separate driveway. As such, the service driveway should be removed, the turntable extent amended to increase landscape and boundary setbacks to the southern boundary. This also affords greater landscaping opportunities in the front setback to Lethbridge Street for tree canopy planting (not a substation).

MTE Response: The service driveway has since been removed, with waste collection access available with the basement parking area, to be accessed via the proposed two-way driveway.

5.2 Pre-Lodgement Meeting Comments

TRAFFIC:

A Traffic and Car Parking report is required, which demonstrates how the proposal meets requirements of the State Environmental Planning Policy (Affordable Rental Housing) 2009.

MTE Response: This Traffic and Parking Impact Assessment details that the In-fill affordable housing requirements of the of the State Environmental Planning Policy (Affordable Rental Housing) 2009 are satisfied by the development, as detailed further in Section 3.2.

The proposal shall demonstrate that entry/exit driveway complies with AS2890 for sight distances, demonstrate vehicle swept paths with all vehicles to enter/exit in a forward direction.

MTE Response: For the sightlines to/from vehicles approaching the site from northbound or southbound (Lethbridge Street and eastbound Phillip Street), the available sightlines exceed the minimum Stopping Sight Distance (SSD) of 45m required under *Figure 3.2* of *AS2890.1:2004* for the 50km/h speed limit roads. However, the proposed driveway location does not strictly comply with this sight distance for vehicle turning left at the roundabout from Phillip Street westbound into Lethbridge Street southbound.

It is relevant to note that the sight distance requirements of *AS2890.1:2004* are understood to be most applicable to frontage roads without traffic calming structures or other measures which limit the speed of vehicles. To determine the likely speed of vehicles turning left at the roundabout reference is made to Austroads' *Guide to Road Design Part 3: Geometric Design – Section 7.4 Circular Curves* which states the following equation for vehicular speeds around curves.

$$R = \frac{v^2}{(e+f)g} = \frac{V^2}{127(e+f)}$$

Where:

v = vehicle speed (m/s)

V = vehicle speed (km/h)

R = curve radius (m)

e = pavement superelevation (m/m)

f = side friction factor (between the tyre and pavement)

g = acceleration due to gravity (9.81 m/s²)

For the subject curve, the curve radius of vehicles movement has been assessed as approximately 9.3m from aerial imagery, the pavement superelevation is assumed to be 3% (which is a common superelevation of roads) and the maximum side friction factor for the curve is 0.35 in accordance with *Figure H 3* of the *Austroads Guide to Road Design, Part 3: Geometric Design*.

Using the above values, the speed of vehicles turning left at the roundabout is expected to be approximately 21km/h. An equivalent minimum SSD for this speed on a level grade is

16m in accordance with Section 5.3 of the Austroads Guide to Road Design, Part 3: Geometric Design. There is 29m of sight distance available from the driveway (measured 2.5m back from the road) to vehicles turning left from Phillip Street (measured along the road) as shown in **Annexure F** for reference. Therefore, the site distance required exceeds the requirements under AS2890.1:2004.

Demonstrate that car park, including shared spaces and height clearances, complies with AS2890.1 and AS2890.6.

MTE Response: The car park design has been assessed, as detailed further in **Section 3.6**, to be generally compliant with the relevant Australian Standards, subject to any variations detailed in **Section 3.7**.

A Traffic and Car Parking Report shall include details on the proposed waste arrangement, demonstrating the method of waste collection, adequate separation from car parking and pedestrian areas, and addressing potential impacts on traffic, access and pedestrian safety.

It is noted that the plan tabled at the pre-lodgement meeting, which included separated entry/exit and a turntable for waste collection vehicles, is preferred by Council's Traffic Engineer over other options discussed at the meeting. In this regard, the design and operational benefits (as discussed at the pre-lodgement meeting) of removing the waste vehicle turntable and driveway, should not be pursued over pedestrian and driver safety in the car park in the instance that waste vehicle access and reversing is proposed within the car park area (as discussed)

Waste vehicle reversing in the car park (which was discussed at the meeting) will not be supported for safety reasons due to the potential for conflict with pedestrians and drivers of other vehicles in the car park area.

MTE Response: The servicing and loading operations of the site are detailed within **Section 3.5**. There is a wall separating the lift area to the loading area, and as such acts as a safety barrier to pedestrian for any waste collection vehicle reversing. There are also additional bollards to further segregate pedestrian access from waste servicing, providing additional protection.

Waste collection operations at the site are expected to occur once a week and are likely to occur outside of peak hourly AM and PM commuter periods such any other vehicular or pedestrian movements occurring within the basement whilst the waste collection operations are undertaken are to be quite rare.

There are no significant obstructions to sight lines surrounding the loading bay from pedestrians and vehicles such that all other basement users will be able to clearly identify the position and or movement of waste collection vehicles. In addition, typical safety features fitted to heavy vehicles that are activated during reverse manoeuvres including flashing lights and the reversing sound alarm will ensure the safety of any pedestrians travelling within the basement by alerting the pedestrians to the vehicle's movements. As such, the

reversing movement of the proposed waste collection vehicle into the loading bay within the basement is considered to be functionally safer to that of a car reversing into parking spaces within the basement such that there will be no adverse safety impacts to vehicles or pedestrians resulting from this operation.

In addition to the above, measures can be implemented to improve the safety of the waste collection vehicle if required by Council:

- Have a secondary pedestrian (i.e. passenger in waste collection vehicle) monitor pedestrians during waste collection movements in the car park. This would be similar to a traffic controller.
- Pick-up waste outside of peak operating times (this is typically undertaken and is a normal practice).

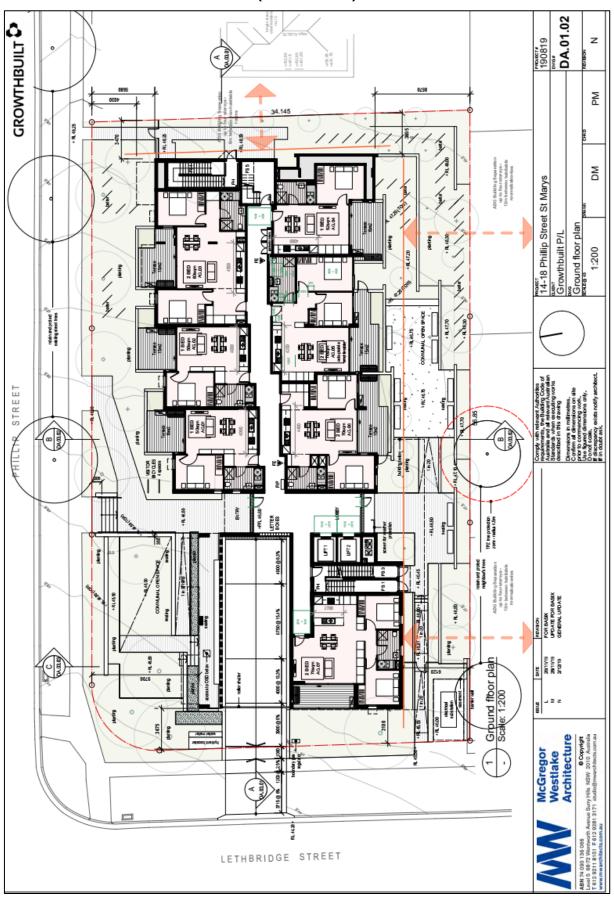
It should be noted that the Waste Management plan provided by Elephants Foot further supports this proposed servicing arrangements and does not consider this set up a safety risk.

The statement made by Council's Traffic Engineer that reversing in the car park by a waste vehicle is contrary to Penrith Council's DCP which states that waste vehicles are to enter and exit the site in a forward direction "with limited manoeuvring and reversing on-site". The Penrith Council DCP does not state that no reverse movements are to occur, but reverse movements are to be limited, hence the proposed development complies with this requirement.

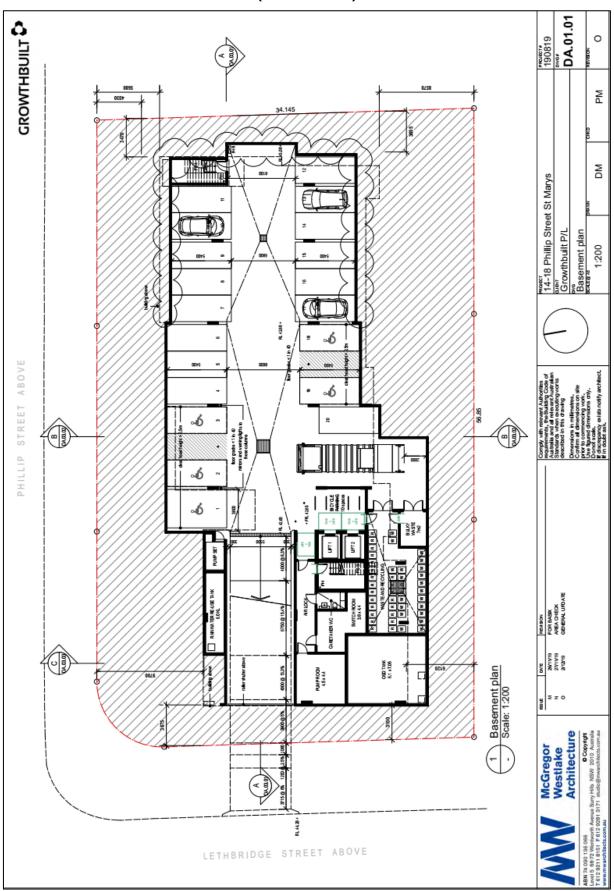
Reference is also made to *Clause 3.2.2 of AS2890.2:2018* which states that reverse manoeuvres at the property boundary, if permitted by the relevant authority shall be limited to one only, either on entering or departing, and be subject to determination of both safety and obstruction to other on-street traffic.

Hence, reverse manoeuvres into or out of a development are allowable from a public road subject to consideration to both safety and obstruction to other on-street traffic. This clause from AS2890.2:2018 is highly relevant as it does not specifically say that consideration needs to be undertaken to pedestrians. In MTE's view, a reverse movement into and out of a development should only be allowable from a local road (or lower order road than a local road) subject to consideration to traffic flow (which informs the safety) and any other safety considerations such as sight lines.

Notwithstanding the above consideration, $M^CLaren\ Traffic\ Engineering\ (MTE)$ are practicing road safety consultants who have multiple accredited auditors registered with $Transport\ for\ NSW\ Register\ of\ Road\ Safety\ Auditors\ (https://www.roadsafetyregister.com.au/). The highest level of accreditation within the register is level 3, of which is held by MTE. As such, the proposed design and layout of the basement is fully supportable and can be certified based upon the Australian Standards and road safety considerations.$


An assessment of the risk associated with a waste collection vehicle reversing into the loading bay is reproduced in **Annexure G** for reference. The results indicate that pedestrian and vehicle conflicts have a risk of "Low" resulting in the recommended following treatment approach "should be corrected or the risk reduced, if the treatment cost is low" based upon AUSTROADS. As such the proposed mitigation measures mentioned above are adequate in reducing the risk and as such the proposed design and operation of the waste collection vehicle is fully supportable.

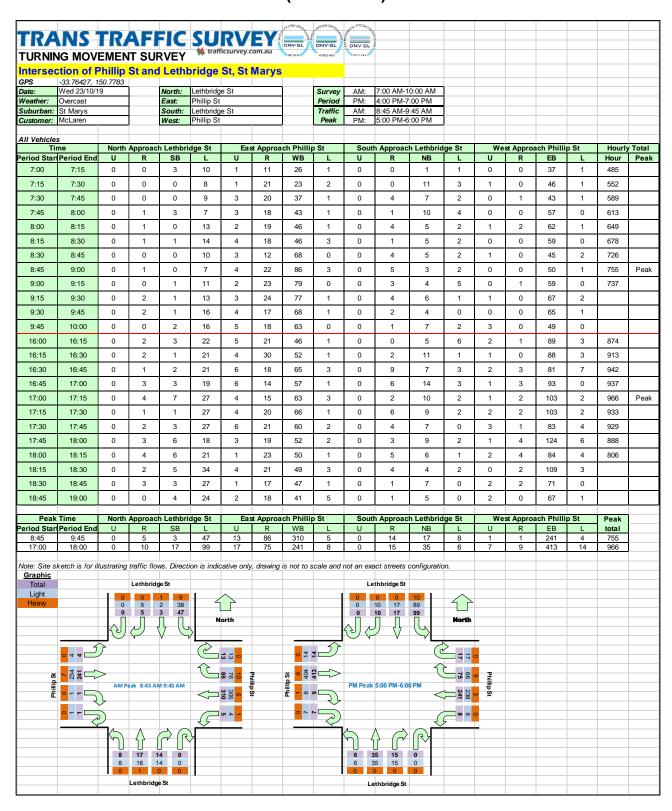
6 CONCLUSION


In view of the foregoing, the subject High Density Residential Development proposal at 14-18 Phillip Street, St Marys (as depicted in **Annexure A**) is fully supportable in terms of its traffic and parking impacts. The following outcomes of this traffic impact assessment are relevant to note:

- The proposal includes 20 residential car parking spaces including five (5) adaptable parking spaces, satisfying the SEPP requirements for the proposed in-fill affordable housing.
- In accordance with the above rates, the proposed development requires 9 to 13 residential bicycle spaces, and 2 to 4 visitor bicycle spaces (i.e. a range of 11 to 17 total spaces). The proposed plans indicate a bicycle parking provision of 10 bicycle spaces within the basement to be shared between residents and 4 visitor spaces on ground floor, resulting in compliance with Council's DCP requirements.
- The parking areas of the site have been assessed against the relevant sections of AS2890.1, AS2890.2, AS2890.6 and AS4299 and have been found to satisfy the objectives of each standard. Relevant swept path testing is reproduced in **Annexure** D for reference.
- The peak traffic generation associated with the proposed development is estimated in the order of nine (9) vehicle trips. The proposed development will not have an adverse effect on any nearby intersections and can be readily accommodated within the existing road network with minimal impacts in terms of traffic flow efficiency, residential amenity and road safety considerations.
- There is a wall separating the lift area to the loading area, and as such acts as a safety barrier to pedestrian for any waste collection vehicle reversing. There are also additional bollards to further segregate pedestrian access from waste servicing, providing additional protection. There are no significant obstructions to sight lines surrounding the loading bay from pedestrians and vehicles such that all other basement users will be able to clearly identify the position and or movement of waste collection vehicles. The reversing movement of the proposed waste collection vehicle into the loading bay within the basement is considered to be functionally similar to that of cars reversing into parking spaces within the basement such that there will be no adverse safety impacts to vehicles or pedestrians resulting from this operation. It should be noted that the Waste Management plan provided by Elephants Foot further supports this proposed servicing arrangements and does not consider this set up a safety risk. Further, low cost mitigation measures consist of having a pedestrians from the waste collection vehicle monitoring the pedestrian movements during waste collection and picking up the waste outside of peak operating times.

ANNEXURE A: PROPOSED PLANS (Sheet 1 of 2)

ANNEXURE A: PROPOSED PLANS (Sheet 2 of 2)


ANNEXURE B: TRAFFIC SURVEY RESULTS

(Sheet 1 of 2)

TRA	NS.	TRA	AFI	FIC	SU	RV	EY	ONV-GL //	DNV-GL /	DNV-GL		
	IG MOV				traff	icsurvey.c	om.au	BC XXX	ASNZS 4801	80 1001		
nterse	ction of F	hillip	St and	Gloss	sop St	St Ma	rys					
PS ate:	-33.76465, 1 Wed 23/10/1			North:	Glossop	St			Survey	AM:	7:00 AM-1	0:00 AM
/eather:	Overcast			East:	N/A				Period	PM:	4:00 PM-7	
	St Marys McLaren			South: West:	Glossop Phillip St				Traffic Peak	AM: PM:	8:00 AM-9 4:30 PM-5	
11 1/-1-1-1-												
II Vehicle Ti		North Ap	proach G	lossop S	South Ap	proach G	lossop S	West Ap	proach F	hillip St	Hourly	/ Total
	Period End	U	R	SB	U	NB	L	U	R	L	Hour	Peak
7:00 7:15	7:15 7:30	0	29 32	140 154	0	251 239	10 15	0	13	34 44	2113 2237	
7:30	7:45	0	42	197	0	239	19	0	16	40	2377	
7:45	8:00	1	51	179	0	288	14	0	16	49	2469	
8:00	8:15	0	52	216	0	238	16	0	10	69	2517	Peak
8:15	8:30	0	59	242	0	248	12	0	15	59	2516	1 can
8:30	8:45	0	68	254	0	239	15	0	13	46	2468	
8:45	9:00	0	99	227	0	242	16	0	20	42	2324	
9:00	9:15	1	93	190	0	232	11	0	17	56	2158	
9:15	9:30	1	91	182	0	215	14	0	18	66		
9:30	9:45	0	75	158	0	160	15	0	24	59		
9:45	10:00	0	81	156	0	172	5	0	20	46		
16:00	16:15	0	64	300	0	267	9	0	30	81	2951	
16:15	16:30	0	62	304	0	268	25	0	35	76	2947	
16:30	16:45	0	75	284	0	233	17	0	31	80	2965	Peak
16:45	17:00	0	71	256	0	258	7	0	40	78	2913	
17:00	17:15	0	67	282	0	248	18	0	28	104	2835	
17:15	17:30	0	68	281	0	280	23	0	36	100	2651	
17:30	17:45	0	69	221	0	244	20	0	41	73	2471	
17:45	18:00	0	62	178	0	233	14	0	30	115	2342	
18:00	18:15	0	61	185	0	193	14	0	46	64	2188	
18:15	18:30	0	63	184	0	200	14	0	45	102		
18:30	18:45	0	52	175	0	199	14	0	31	68		
18:45	19:00	0	56	149	0	171	10	0	33	59		
Peak	Time	North Ap	proach G	Slossop S	South Ap	proach G	lossop S	West Ap	proach F	hillip St	Peak	
iod Star 8:00	Period End 9:00	0	R 278	939	0	NB 967	59	0	R 58	216	total 2517	
16:30	17:30	0	281	1103	0	1019	65	0	135	362	2965	
te: Site s	ketch is for il	lustrating	traffic flo	ws. Directi	ion is indic	ative only	, drawing	is not to s	cale and	not an exa	act streets	configuration
Graphic Total												
Light			sop St						Glossop S			
Heavy				131 308				0	9 272	56 1047	$\vdash \prec$	>
		0 2	278 9	939	North			0	281	1103	Nor	th
	- (7) (٠ (لا					(3)				
0.0	\${	,					N T			٧		
	N					17						
53		AM Peal6:0	0 AM-9:00	AM		Phillip St	رب ا	PM Po	ak4:30 PM-	5:30 PM		
Ē						를 무	■ √	- m re	CARLOU F IVI	0.00 F W		
0 0	•					0 0	. 5				-	
_			^				4	- 4				
		7) (₹ >						R		
			067	0				65	1019	0		
			08	0				61	952 67	0		
		Class	sop St						GlossopS			

ANNEXURE B: TRAFFIC SURVEY RESULTS

(Sheet 2 of 2)

(Sheet 1 of 4)

MOVEMENT SUMMARY

Site: 101 [Phillip Street / Glossop Street EX AM]

Intersection of Phillip Street / Glossop Street **Existing Conditions** AM Peak Period Site Category: (None)

Signals - Fixed Time Isolated Cycle Time = 90 seconds (Site Optimum Cycle Time - Minimum Delay)

Move	ment P	erformanc	e - Ve	hicles								
Mov ID	Turn	Demand F Total	lows HV	Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed
		veh/h	%	v/c	sec		veh	m				km/h
South:	Glosso	p Street (S)										
1	L2	159	0.0	0.526	19.0	LOS B	15.2	106.6	0.68	0.66	0.68	47.1
2	T1	967	0.0	0.526	13.4	LOS A	15.6	109.2	0.68	0.63	0.68	48.7
Approa	ach	1126	0.0	0.526	14.2	LOS A	15.6	109.2	0.68	0.63	0.68	48.5
North:	Glosso	p Street (N)										
8	T1	939	0.0	0.323	4.1	LOS A	6.8	47.7	0.36	0.32	0.36	56.2
9	R2	278	0.0	0.640	26.0	LOS B	10.7	75.0	0.96	0.90	1.03	41.2
Approa	ach	1217	0.0	0.640	9.1	LOS A	10.7	75.0	0.50	0.45	0.51	51.9
West:	Phillip S	Street (W)										
10	L2	216	0.0	0.355	32.4	LOS C	7.0	49.3	0.83	0.78	0.83	38.5
12	R2	58	0.0	0.355	47.4	LOS D	2.9	20.5	0.97	0.76	0.97	33.1
Approa	ach	274	0.0	0.355	35.5	LOS C	7.0	49.3	0.86	0.78	0.86	37.2
All Veh	nicles	2617	0.0	0.640	14.1	LOS A	15.6	109.2	0.61	0.56	0.62	48.4

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

(Sheet 2 of 4)

MOVEMENT SUMMARY

Site: 101 [Phillip Street / Glossop Street EX PM]

Intersection of Phillip Street / Glossop Street Existing Conditions PM Peak Period

Site Category: (None)

Signals - Fixed Time Isolated Cycle Time = 90 seconds (Site Optimum Cycle Time - Minimum Delay)

Mover	nent P	erformance	e - Ve	hicles								
Mov ID	Turn	Demand F Total		Deg. Satn	Average Delay	Level of Service	95% Back Vehicles	of Queue Distance	Prop. Queued	Effective Stop Rate	Aver. No. Cycles	Average Speed
		veh/h	%	v/c	sec		veh	m				km/h
South:	Glosso	p Street (S)										
1	L2	65	0.0	0.547	21.5	LOS B	16.0	111.9	0.73	0.67	0.73	46.1
2	T1	1019	0.0	0.547	16.0	LOS B	16.2	113.1	0.73	0.66	0.73	47.3
Approa	ach	1084	0.0	0.547	16.3	LOS B	16.2	113.1	0.73	0.66	0.73	47.2
North:	Glosso	p Street (N)										
8	T1	1103	0.0	0.411	6.4	LOS A	10.4	72.5	0.47	0.42	0.47	54.3
9	R2	281	0.0	0.696	32.2	LOS C	11.4	80.0	0.98	0.94	1.16	38.5
Approa	ach	1384	0.0	0.696	11.7	LOS A	11.4	80.0	0.57	0.52	0.61	50.1
West: I	Phillip S	Street (W)										
10	L2	362	0.0	0.521	31.1	LOS C	12.0	84.1	0.85	0.81	0.85	39.0
12	R2	135	0.0	0.521	43.7	LOS D	6.4	44.5	0.96	0.80	0.96	34.3
Approa	ach	497	0.0	0.521	34.5	LOS C	12.0	84.1	0.88	0.81	0.88	37.6
All Veh	icles	2965	0.0	0.696	17.2	LOS B	16.2	113.1	0.68	0.62	0.70	46.5

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

(Sheet 3 of 4)

MOVEMENT SUMMARY

Site: 101 [Phillip Street / Lethbridge Street EX AM]

Intersection of Phillip Street / Lethbridge Street Existing Conditions AM Peak Period Site Category: (None) Roundabout

Move	ment P	erformance	e - Ve	hicles								
Mov	Т	Demand F	lows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Aver. No.	Average
ID	Turn	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Cycles	Speed
		veh/h	%	v/c	sec		veh	m				km/h
South:	Lethbri	dge Street (S)									
1	L2	8	0.0	0.041	6.6	LOS A	0.2	1.4	0.49	0.63	0.49	51.7
2	T1	17	0.0	0.041	6.9	LOS A	0.2	1.4	0.49	0.63	0.49	52.4
3	R2	14	0.0	0.041	10.0	LOS A	0.2	1.4	0.49	0.63	0.49	52.1
Approa	ach	39	0.0	0.041	8.0	LOS A	0.2	1.4	0.49	0.63	0.49	52.2
East: F	Phillip St	treet (E)										
4	L2	5	0.0	0.261	5.1	LOS A	1.7	11.6	0.08	0.53	0.08	53.0
5	T1	310	0.0	0.261	4.8	LOS A	1.7	11.6	0.08	0.53	0.08	54.1
6	R2	86	0.0	0.261	7.9	LOS A	1.7	11.6	0.08	0.53	0.08	53.7
6u	U	13	0.0	0.261	9.5	LOS A	1.7	11.6	0.08	0.53	0.08	54.3
Approa	ach	414	0.0	0.261	5.6	LOS A	1.7	11.6	0.08	0.53	0.08	54.0
North:	Lethbrid	dge Street (N	N)									
7	L2	47	0.0	0.053	5.8	LOS A	0.3	1.9	0.42	0.58	0.42	52.9
8	T1	3	0.0	0.053	6.1	LOS A	0.3	1.9	0.42	0.58	0.42	53.7
9	R2	5	0.0	0.053	9.3	LOS A	0.3	1.9	0.42	0.58	0.42	53.4
Approa	ach	55	0.0	0.053	6.2	LOS A	0.3	1.9	0.42	0.58	0.42	53.0
West:	Phillip S	street (W)										
10	L2	4	0.0	0.209	5.8	LOS A	1.1	8.0	0.32	0.51	0.32	52.6
11	T1	241	0.0	0.209	5.5	LOS A	1.1	8.0	0.32	0.51	0.32	53.7
12	R2	1	0.0	0.209	8.6	LOS A	1.1	8.0	0.32	0.51	0.32	53.3
12u	U	1	0.0	0.209	10.3	LOS A	1.1	8.0	0.32	0.51	0.32	53.9
Approa	ach	247	0.0	0.209	5.6	LOS A	1.1	8.0	0.32	0.51	0.32	53.7
All Vel	nicles	755	0.0	0.261	5.8	LOS A	1.7	11.6	0.20	0.53	0.20	53.7

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site tab).

Vehicle movement LOS values are based on average delay per movement.

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.

SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

(Sheet 4 of 4)

MOVEMENT SUMMARY

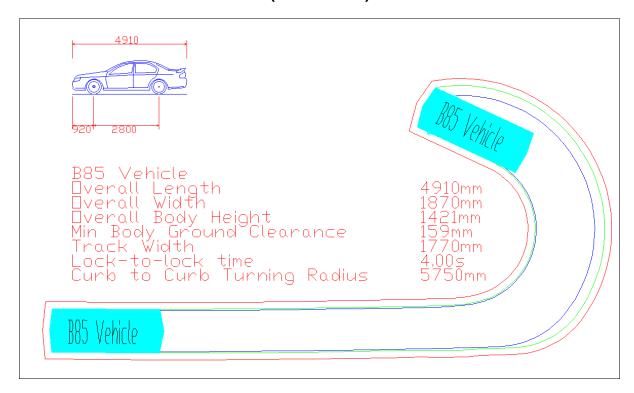
Site: 101 [Phillip Street / Lethbridge Street EX PM]

Intersection of Phillip Street / Lethbridge Street **Existing Conditions** PM Peak Period Site Category: (None) Roundabout

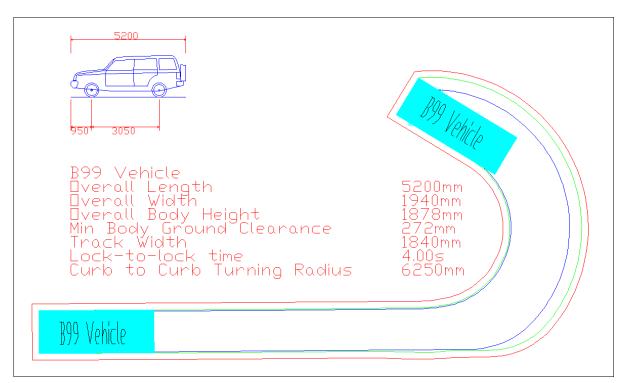
Move	ment P	erformance	e - Ve	hicles								
Mov	Turn	Demand F	lows	Deg.	Average	Level of	95% Back	of Queue	Prop.	Effective	Aver. No.	Average
ID	Tulli	Total	HV	Satn	Delay	Service	Vehicles	Distance	Queued	Stop Rate	Cycles	Speed
		veh/h	%	v/c	sec		veh	m				km/h
South:	Lethbri	dge Street (S)									
1	L2	6	0.0	0.057	6.3	LOS A	0.3	2.0	0.47	0.61	0.47	52.0
2	T1	35		0.057	6.5	LOS A	0.3	2.0	0.47	0.61	0.47	52.7
3	R2	15		0.057	9.7	LOS A	0.3	2.0	0.47	0.61	0.47	52.4
Approa	ach	56	0.0	0.057	7.4	LOS A	0.3	2.0	0.47	0.61	0.47	52.6
East: F	Phillip St	treet (E)										
4	L2	8	0.0	0.244	5.3	LOS A	1.5	10.7	0.19	0.52	0.19	52.6
5	T1	241	0.0	0.244	5.0	LOS A	1.5	10.7	0.19	0.52	0.19	53.7
6	R2	75	0.0	0.244	8.0	LOS A	1.5	10.7	0.19	0.52	0.19	53.2
6u	U	17	0.0	0.244	9.7	LOS A	1.5	10.7	0.19	0.52	0.19	53.8
Approa	ach	341	0.0	0.244	5.9	LOS A	1.5	10.7	0.19	0.52	0.19	53.5
North:	Lethbrid	dge Street (N	۷)									
7	L2	99	0.0	0.143	7.1	LOS A	8.0	5.6	0.59	0.68	0.59	52.1
8	T1	17	0.0	0.143	7.4	LOS A	8.0	5.6	0.59	0.68	0.59	52.9
9	R2	10	0.0	0.143	10.6	LOS A	8.0	5.6	0.59	0.68	0.59	52.6
Approa	ach	126	0.0	0.143	7.4	LOS A	8.0	5.6	0.59	0.68	0.59	52.2
West:	Phillip S	street (W)										
10	L2	14	0.0	0.368	6.0	LOS A	2.4	16.7	0.39	0.54	0.39	52.3
11	T1	413	0.0	0.368	5.7	LOS A	2.4	16.7	0.39	0.54	0.39	53.4
12	R2	9	0.0	0.368	8.8	LOS A	2.4	16.7	0.39	0.54	0.39	52.9
12u	U	7	0.0	0.368	10.5	LOS A	2.4	16.7	0.39	0.54	0.39	53.5
Approa	ach	443	0.0	0.368	5.9	LOS A	2.4	16.7	0.39	0.54	0.39	53.4
All Veh	nicles	966	0.0	0.368	6.2	LOS A	2.4	16.7	0.35	0.56	0.35	53.2

Site Level of Service (LOS) Method: Delay (RTA NSW). Site LOS Method is specified in the Parameter Settings dialog (Site

Vehicle movement LOS values are based on average delay per movement.

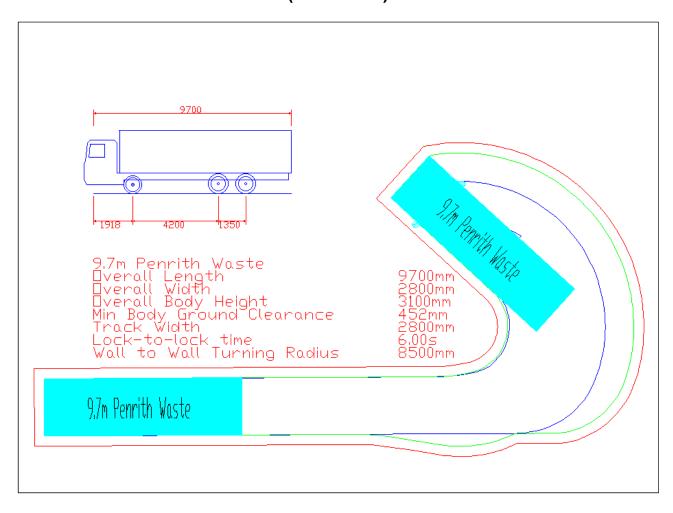

Intersection and Approach LOS values are based on average delay for all vehicle movements.

Roundabout Capacity Model: SIDRA Standard.


SIDRA Standard Delay Model is used. Control Delay includes Geometric Delay.

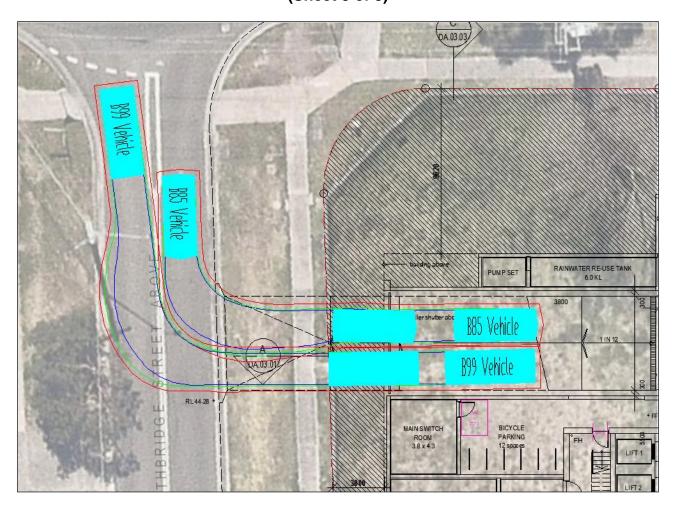
Gap-Acceptance Capacity: SIDRA Standard (Akçelik M3D).

(Sheet 1 of 5)

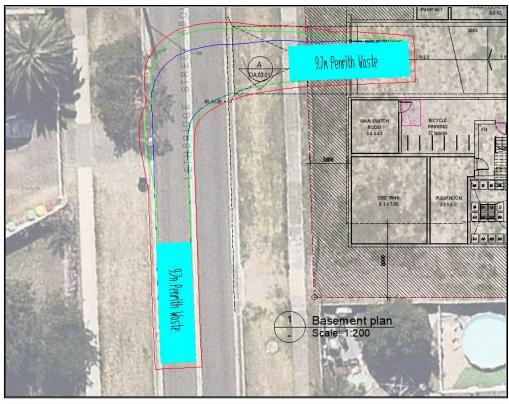

AUSTRALIAN STANDARD 85TH PERCENTILE SIZE VEHICLE (B85)

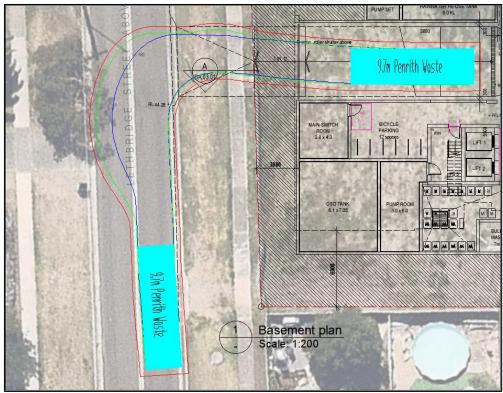
AUSTRALIAN STANDARD 99TH PERCENTILE SIZE VEHICLE (B99)

Blue – Tyre Path Green – Vehicle Body Red – 300mm Clearance

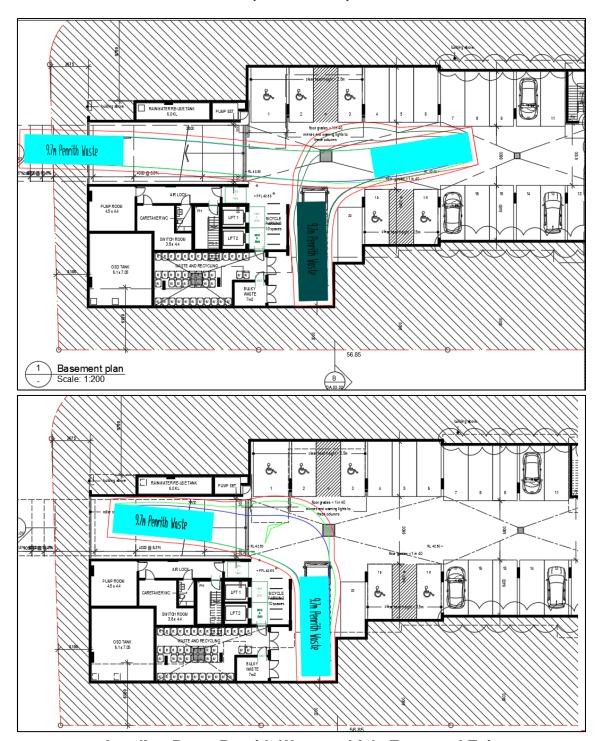

(Sheet 2 of 5)

9.7M LENGTH PENRITH WASTE COLLECTION VEHICLE


Blue – Tyre Path Green – Vehicle Body Red –500mm Clearance

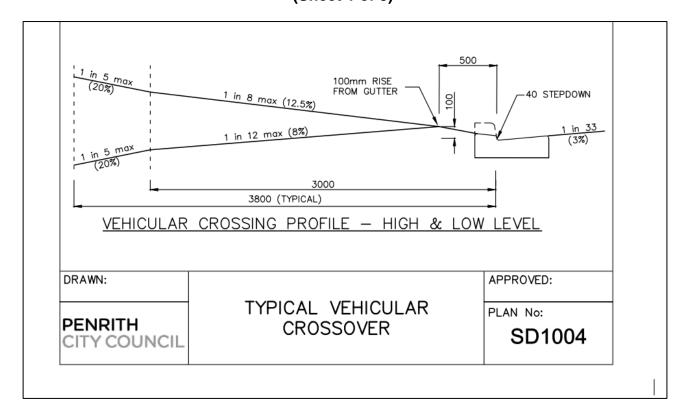

(Sheet 3 of 5)

Driveway Two Way Passing
B85 Left Turn IN / B99 Right Turn OUT
Successful


(Sheet 4 of 5)

Penrith Waste Vehicle Driveway Access
Right Turn IN / Left Turn OUT
Successful

(Sheet 5 of 5)



Loading Bay – Penrith Waste vehicle Entry and Exit

2 Manoeuvres Reverse IN / 1 Manoeuvre Forward OUT

Successful

(Sheet 1 of 5)

COUNCIL CROSSOVER DESIGN

(Sheet 2 of 5)

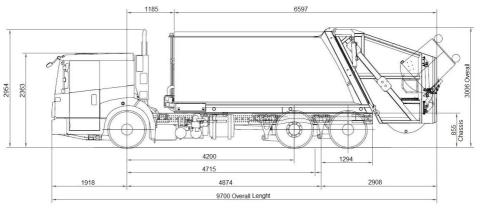
2.3 DESIGN SPECIFICATIONS REAR LOAD WASTE COLLECTION VEHICLES

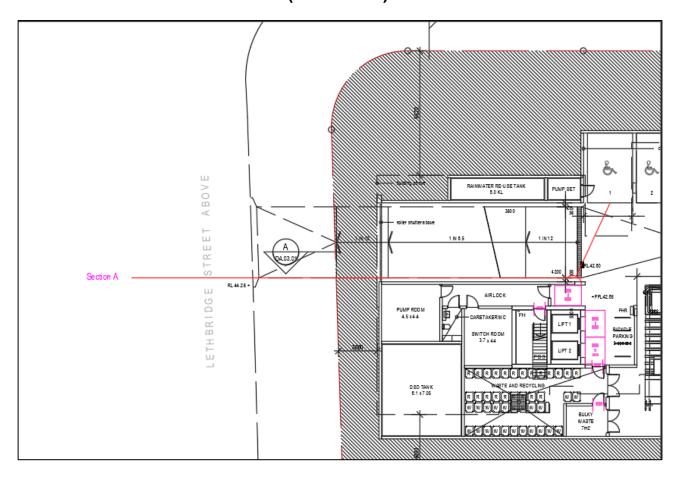
The following dimensions are provided for a standard heavy rigid vehicle as identified in Australian Standard 2890.2:

2.3.1 Low Entry Heavy Rigid Waste Collection Vehicle

Vehicle Classifications	Heavy Rigid Vehicle Dimensions
Overall Length (m)	9.7
Operational Length (m)	11.7
Design Width (m)	2.8
Design Height (m)	3.1
Swept Circle (m)	17.0
Clearance (travel height) (m)	3.5
Roadway/ramp grade (max)	1:6.5 (15.4%)
Rate of change of grade (max)	1:12 (8.3%) in 4.0m of travel
Gross Weight (max tonnes)	28.0
Front Chassis Clearance	13°
Rear Chassis Clearance	16°

Table 1: Standard dimensions in accordance with AS 2890.2

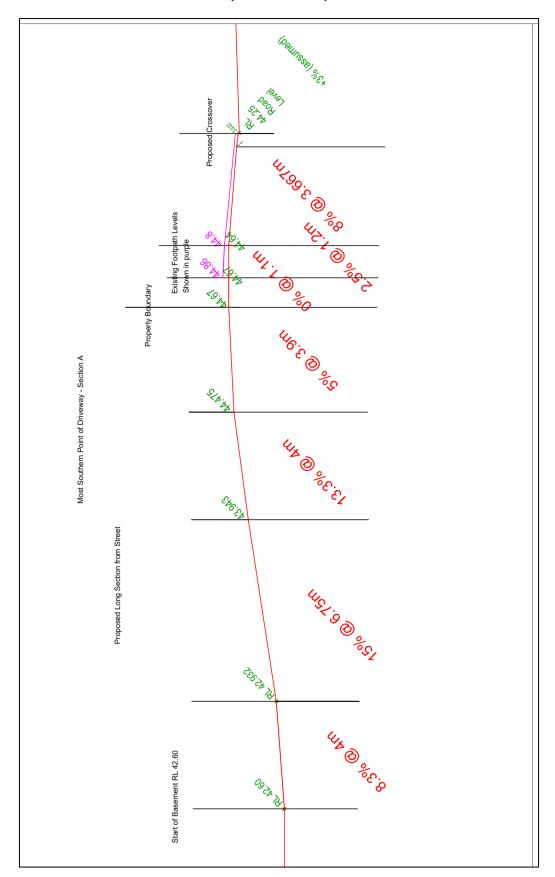


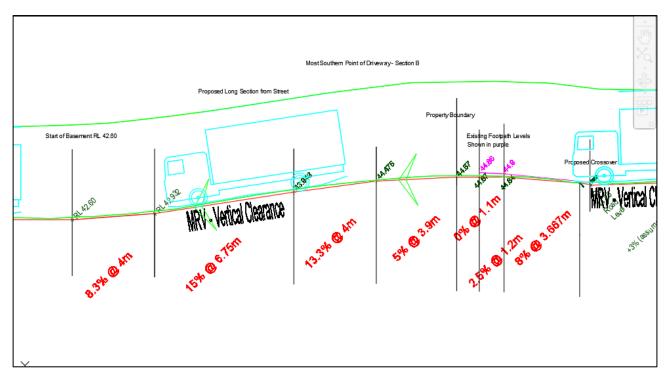

Figure 1: 9.7m Heavy Rigid Rear Load Waste Collection Vehicle specifications

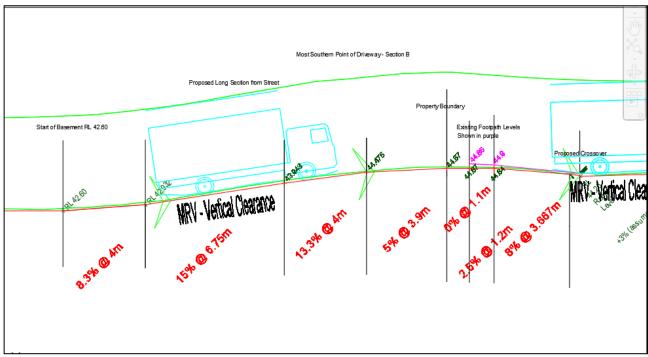
Penrith City Council PO Box 60, Penrith NSW 2751 Australia T 4732 7777 F 4732 7958 penrithcity.nsw.gov.au

Page | 4

PENRITH CITY COUNCIL

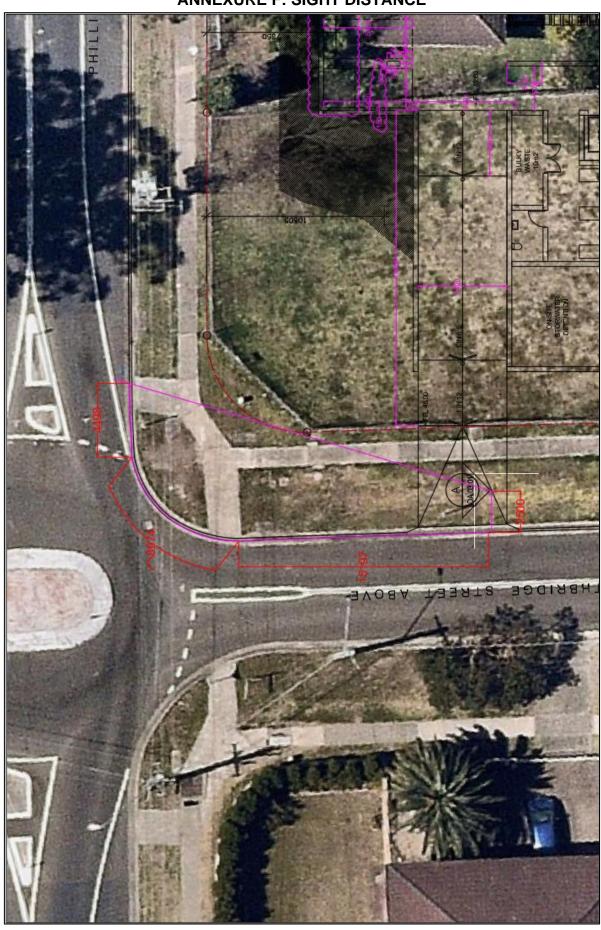

(Sheet 3 of 5)


SECTIONS


Note southern side of the driveway shown only as it is the worst case.

(Sheet 4 of 5)

(Sheet 5 of 5)



Section B – Undercarriage Vertical Clearance Testing for the 8.8m Length Medium Rigid Vehicle

Successful - No scraping occurs

ANNEXURE F: SIGHT DISTANCE

ANNEXURE G: ASSESSMENT OF RISK

Reference is made to AUSTROADS "Guide to Road Safety Part 6 2019 and "Guide to Road Safety Part 6A" which provides guidance on indicating the level of risk and how to respond to it. The process is to assess the hazard into two categories based upon **Table 4** & **Table 5**, before determining the level of risk shown in **Table 6**. All tables outlined below are taken from *Guide to Road Safety Part 6A*.

TABLE 4: HOW OFTEN IS THE PROBLEM LIKELY TO LEAD TO A CRASH

Frequency	Description
Frequent	Once or more per week
Probable	Once or more per year (but less than once a week)
Occasional	Once every five or ten years
Improbable	Less often than once every ten years

TABLE 5: WHAT IS THE LIKELY SEVERITY OF THE RESULTING CRASH TYPE

Severity	Description	Examples		
Catastrophic	Likely multiple deaths	High-speed, multi-vehicle crash on a freeway. Car runs into crowded bus stop Bus and petrol tanker collide Collapse of a bridge or tunnel		
Serious	Likely death or serious injury	High or medium-speed vehicle collision High or medium-speed collision with a fixed roadside object Pedestrian or cyclist struck by a car		
Minor	Likely minor injury	Some low-speed vehicle collisions Cyclist falls from bicycle at low speed Left-turn rear-end crash in a slip lane		
Limited	Likely trivial injury or property damage only	Some low-speed vehicle collisions Pedestrians walks into object (no head injury) Car reverses into post		

The concern raised by Council is outlined below:

Waste vehicle reversing in the car park (which was discussed at the meeting) will not be supported for safety reasons due to the potential for conflict with pedestrians and drivers of other vehicles in the car park area.

Based upon the hazard of a waste vehicle reversing in the car park and the potential for a conflict with pedestrians and drivers of other vehicles within the car park area, the likelihood that this movement would lead to a crash is improbable (the occurrence of this would be more than once every ten years).

Similarly, the severity of a pedestrian conflicting with a waste vehicle when it is reversing at low speeds within a basement which is akin to a shared zone of 10km/h would be minor. The severity of serious for a pedestrian struck by a car or cyclists relates to this being

undertaken at speed and is not a reasonable severity within a low speed environment. Further, the severity of a vehicle collision at low speed with the waste collection vehicle would be limited severity.

Based upon the above, the level of risk of a vehicle - waste vehicle collision is low, whilst a collision of a waste vehicle and pedestrian would be low.

TABLE 6: LEVEL OF RISK RESULT TABLE

	Frequent	Probable	Occasional	Improbable
Catastrophic	Intolerable	Intolerable	Intolerable	High
Serious	Intolerable	Intolerable	High	Medium
Minor	Intolerable	High	Medium	Low
Limited	High	Medium	Low	Low